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Abstract. Results of a theoretical and experimental investigation into new effects in moving-media optics are pre-
sented. An exact analytical solution is obtained for the trajectory of the wave vector of a monochromatic elec-
tromagnetic plane wave in a medium undergoing a complex motion. It is shown that the spatial dragging of
the electromagnetic wave by the moving medium can be described correctly in the general case only if relativ-
istic terms of order β2 are taken into account. Also, in this investigation a spatial effect of the light drag was
observed at a wavelength of λ = 0·63299µm by means of an optical disk with a refractive index n = 1·4766, a
radius of R0 =0·06 m rotating at a frequency of ω=25 Hz. A relative shift of the interference pattern, monitored
by the time of the interference band motion across the aperture of a photodetector for the disk rotating in the
opposite directions, amounted to �

exp
� = 0·0076 ± 0·0030 of the interference bandwidth. The results of theoretical

calculations of the expected interference pattern shift on the basis of the total solution of the dispersion equation
in the experiment are in agreement with the experimental results. Analysis of the results obtained suggests that
the detected effects determine a wide class of observed phenomena, even when the velocities of moving media are
non-relativistic.
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1. Introduction

Moving-medium optics, besides the classical effects of Sagnac, Fizeau and Doppler, also pre-
dicts the following phenomena: violation of Snell’s law, rotation of the polarization plane of
an electromagnetic wave when it is reflected from a moving boundary of two moving media,
variation of the amplitude of the passing and the reflected wave, and distortion of a wave-
vector trajectory of light in a medium undergoing a complex motion.

A curvature of the trajectory of an electromagnetic wave arises in the Sagnac experiment
[1] when the refractive index of the medium between mirrors satisfies the condition n>1, on
leaving the moving frame of reference of the radiation source and detector. If the latter con-
dition does not hold, this system is independent of the refractive index in the non-relativistic
approximation, as was correctly pointed out in [2, 3].

Evidently, to describe the effect of distortion of the trajectory of an electromagnetic wave,
it is necessary to use the solution of the dispersion equation of moving-medium optics for
the spatial case of medium motion. Hence, the solution of the dispersion equation has been
experimentally tested in special cases only.

In Sagnac-type interferometers an interference-pattern shift arises, which in the first place
is attributable to cinematic motion of mirrors. A review of works on the Sagnac effect
and the equations describing the electrodynamics in rotating frames can be found in [4].

∗ Author for correspondence



240 V. Gladyshev et al.

If the velocity of the medium has no tangential component (u2t = 0, u2n �= 0), there is a
longitudinal entrainment as found in the classic Fizeau experiment [5]. The Fizeau effect is
considerably weaker than that of Sagnac. Hence, as was noticed by Arditty [6], using the rest
frame of the interferometer avoids the need to take into account Fizeau and Doppler effects.

In the work of Bilger et al. [7], where light propagates in a rotating disk in a ring interfer-
ometer, the Fizeau effect appears, but the authors did not take into account that Snell’s law
is violated on the media boundary (it is a tangential break of velocity on the plane surface
of the disk). Our calculation shows that the additional IP shift should be close to 20% of the
general Fizeau effect.

Part of the experiments [8, 9] was devoted to attempts to estimate and measure a disper-
sion term in Frenel’s and Lorent’s formulae for fiber-optical gyroscopes. Using a low-loss fiber
and very long waveguide as the beam path in ring interferometers, one can measure the rota-
tional Fizeau drag effect. The experimental results of Vali et al. [10] are accurate enough to
detect the presence of the dispersion term in the drag coefficient.

Some experiments [11] gave results that agree well with the solution of the electrodynamic
equations for moving media with normal velocity component of the media boundary. However,
these experiments constituted an experimental test of only that part of the equations which is
associated with the motion of the interface, not of the medium itself. The passage of an elec-
tromagnetic wave through a medium with rotation opens up the possibility of an experimental
test of the part of the solution of the dispersion equation which contains terms with u2t and
u2n.

In the present work, the case when a light source, a receiver and a moving medium are in
different frames is considered. In this case it is more effective to apply the theoretical appara-
tus of electrodynamics of moving media, which is based on the solution of dispersion equa-
tions complemented with boundary conditions.

The solution of the dispersion relation for the propagation of an electromagnetic wave in
a medium is valid for an atomic layer with a thickness on the order of a few wavelengths of
the electromagnetic radiation [12, pp. 50–51 (Russian ed.)]. For analysing each layer of the
medium, the only properties available are the frequency ω0 and the angle of incidence on the
interface between two media, ϑ0. The motion of a given layer of the medium affects the coor-
dinates of the point at which the wave front intersects the next layer. In general, for a region
of the medium in which the velocity is not constant, it is necessary to solve a dispersion equa-
tion for each neighboring local region of the medium. The complete solution is the set of
local solutions for the regions in which the velocity of the medium is constant to within the
physically necessary accuracy.

The propagation of electromagnetic radiation in a rotating medium is determined by the
superposition of the primary wave and secondary waves appearing as a result of the interac-
tion of the electromagnetic radiation with atoms of the moving medium. By solving a dis-
persion equation, it is possible to determine the radiation-wave vector in any local region
of the trajectory with an allowance for the spatial distribution of the medium velocity. The
validity of the solution has been repeatedly confirmed by experiment, but the complexity of
such investigations allowed only certain particular cases to be studied, such as the longitudi-
nal Fizeau effect and the normal velocity break, in which the light beam is affected by either
normal or tangential components of the medium velocity.

Propagating in a rotating medium, an electromagnetic wave is affected simultaneously by
both normal and tangential components of the motion. Therefore, experimental observation
of the spatial effect of the light-wave entrainment confirms the validity of the total solution
of the dispersion equation.
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In this article a new relativistic effect is studied for a medium with permittivity ε and mag-
netic permeability µ undergoing a rotation ω. This effect is the curvature of the trajectory
traced out by a monochromatic plane electromagnetic wave.

An exact analytical solution is obtained for the trajectory of the wave vector of a mono-
chromatic electromagnetic plane wave in a medium with nonsimple motion (translational
flow). It is shown that the spatial drag of the electromagnetic wave by the moving medium
can be described correctly in the general case only if relativistic terms of order β2 are taken
into account.

Also, in this work we observe a spatial effect of the light drag at a wavelength of
λ = 0·63299µm by an optical disk with a refractive index n = 1·4766, having a radius of
R0 =0·06 m and rotating at a frequency ω=25 Hz. A relative shift of the interference pattern,
monitored by the time of the interference band motion across the aperture of a photodetec-
tor for the disk rotating in the opposite directions, amounted to �

exp
� =0·0076±0·0030 of the

interference bandwidth. The theoretical magnitude �� is obtained while taking into account
the tangential break of velocity on the plane surface of the disk; moreover, the relative error
for the average value �

exp
� is about 13%. The results of theoretical calculations of the expected

interference pattern shift on the basis of the total solution of the dispersion equation in the
experiment are in agreement with the experimental data.

2. Description of electromagnetic radiation in a medium undergoing a complex motion

We consider a medium in the half-space Z<0 which has a permittivity ε1 and a magnetic per-
meability µ1 in a stationary frame of reference (Figure 1). There is also a medium in Z >0,
with permittivity ε2 and magnetic permeability µ2 in its stationary frame of reference. We
choose a frame of reference in which the medium in Z <0 is at rest, while the other medium
is moving at u2 = u2xex + u2yey + u2zez, where ex, ey, ez are unit vectors. A monochromatic
plane electromagnetic wave of frequency ω0 is incident from the first medium on the surface
of the tangential discontinuity in the (X,Y )-plane. The wave vector of the wave, k0, is in the
(X,Z)-plane and makes an angle ϑ0 with the Z-axis. According to the requirement that the
phases of the incident, refracted, and reflected waves be equal at the interface, the tangential
invariant corresponds to It =k0x =k1x =k2x . The invariant I1 =−ω0 =−ω1 =−ω2 corresponds
to equality of the frequencies, due to the zero normal component of the velocity of the inter-
face. Ignoring absorption and dispersion of the moving medium, we have, for this system, the
following coordinate solution for the dispersion relation [13] of the refracted wave:

k2z = ω0

c

[
−κ2γ

2
2 β2zξ2η2 +

(
η2 cos2 ϑ0 +κ2γ

2
2 ξ2

2 η2
2

)1/2
]

, (1)

where

ξ2 =1−β2x sin ϑ0, η−1
2 =1−κ2γ

2
2 β2

2z,

κ2 = ε2µ2 −1, β2x = u2x

c
, β2z = u2z

c
,

γ −2
2 =1−

(
β2

2x +β2
2z

)
, β2

2 =β2
2x +β2

2z.

For a given law of rotation centered at the point x = 0, z = R0, the tangential and normal
components of u2 correspond to

u2x =ω(R0 − z), u2z =ωx, (2)

where ω is the angular velocity.
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Figure 1. By virtue of the spatial effect of electromagnetic-wave dragging by a rotating medium the wave, the vector
trajectory differs from a straight line.

The angle through which the electromagnetic wave is refracted, ϑ2, is found from the rela-
tion tan ϑ2(x =0, z=0)=k2x/k2z, where k2x = (ω0/c) sin ϑ0. We impose a boundary on the tra-
jectory of the electromagnetic wave in the second medium: a surface of radius R0. We require
R0 >>λ0, where k0 =2π/λ0 and λ0 is a wavelength.

The trajectory lies in the (X,Z)-plane. The implicit equation

z=
xmax(x,z)∫

0

k2z

k2x

dx (3)

corresponds to this trajectory. Here

xmax(x, z)= 1
2 sin 2ϑ2

[
R0 − k̂ tan ϑ2 +

(
R2

0 −2R0k̂ tan ϑ2 − k̂2
)1/2

]
, (4)

with

k̂(x, z)=x − z tan ϑ2(x, z),

is the coordinate of the expected intersection of the trajectory of the electromagnetic wave
with the cylindrical surface. This coordinate is drifting with x, z.

Since there is no explicit general solution of (3), it is preferable, for reasons of accuracy,
to use the expression tan ϑ2 (x, z) for numerical estimates of the curvature of the trajectory.
The geometric length of the trajectory of the electromagnetic wave in the rotating medium is
then described by the equation
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Lt =
∫ xmax(x,z)

0

√
1+ c tan2 ϑ2 (x, z)dx. (5)

Using the expression for the geometric length of a rectilinear trajectory to the point with
coordinate zmax, i.e., L0t = √

2R0zmax, we find the equivalent difference in path lengths for
waves that have traversed the path from the point (0,0) to the point (xmax, zmax) with ω = 0
and ω �=0, respectively:

dLcr =n2 (Lt −L0t) . (6)

Since the refractive index, n2 =√
ε2µ2, is not a function of the velocity of the medium, the

path difference due to the longitudinal Fizeau effect clearly does not enter dLcr. Working
from the relation for the propagation velocity of an electromagnetic wave in the medium,
c′ =−I1 cosϑ2/k2z, we can write down an equation for the equivalent length of the trajectory:

Le =
∫ xmax(x,z)

0

k2z

(−I1) sin 2ϑ2(x, z)
dx. (7)

Experimentally, one could measure the accumulated difference between the path lengths tra-
versed by two electromagnetic waves which are incident on the interface between two media
at an angle ϑ0. One of these waves would be propagating in a medium with ω = 0, and the
other in a medium with ω �=0. This accumulated path difference corresponds to

dLe =Le −L0e. (8)

The accumulated path differences due to the traverse and longitudinal entertainment effects
are, respectively,

dLt =n2 (Lt −L0) , (9)

dLl =Le −n2Lt. (10)

Equations (5–10) determine the physical and geometric characteristics of the transformation
of an electromagnetic wave in a frame of reference with rotation.

We turn now to the results of some numerical calculations and some implications. The
basic result of the calculations is to confirm that there are curvilinear propagation trajectories
for electromagnetic waves in a medium with ω �=0, as follows from Equations (1) and (2). This
effect has a clear physical explanation, based on the circumstance that only one component
of the wave vector, k2, changes in a moving medium. Since the equations of electrodynamics
are written in an inertial frame of reference, there is a change in ϑ2 =arctan

(
k2x

/
k2z(u2)

)
in

each local region of the trajectory. In order words, secondary electromagnetic waves change
direction in each local region of the trajectory because of a change in the projection of the
velocity of the atoms of the medium onto the wave vector of the excitation wave. As a result,
there is a drift of the phase velocity, and there is curvature of the trajectory representing the
superposition of all waves.

Interestingly, the wave trajectories with ω=0 and ω �=0 intersect on the straight line z=R0

for arbitrary ϑ0. Numerical values for the transverse and longitudinal entrainment effects
are shown for comparison in Figure 2 in plots vs. ϑ0 for the following parameter values:
k0 = 10−7m−1, n2 = 1·5,R0 = 0·1 m, ω = 104 rad/s. From the shape of the curves for dLt and
dLl we conclude that there is a competition between effects for increasing values of ϑ0. In the
integration, the size of the local region corresponded to ≈ 10−5 m; a reduction of this value
had essentially no effect on the calculated results.
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Figure 2. The dependences of the equivalent path difference dLe, the longitudinal component of the path difference
dLt, the transverse component of the path difference dLl with light dragging effect for two EM waves, one of which
propagates in a medium with ω = 0, and another with ω �= 0, on the incident angle ϑ0 onto a boundary of two
media with account of the shift of an EM radiation exit point on the surface of an optical disk. The dependence
of the equivalent path difference due to bending of a trajectory without shift of an EM radiation exit point is pre-
sented as dLcr(ϑ0).

Calculations of the shortest distance, R̂, from the curvilinear trajectory, when ω �=0, to the
straight line, along which the light propagates when ω = 0, gives the deviation of the wave-
vector trajectory.

As the optical path length varies with different incident angles ϑ0, we introduce the nor-
malized path length, which is equal to the ratio of the current path length, li , at the i-th point
of the trajectory and the full trajectory length Ĵ = li/Le.

The calculation for R̂ was made for each current point of the wave-vector trajectory with
coordinates (x, z) according to the equation

R̂(x, z)=x cosϑ0
2 − z(x) sin ϑ0

2 , (11)

where ϑ0
2 is the refractive angle for ω=0.

With Equation (3) taken into account, Equation (11) can be rewritten in terms of an inte-
gral equation:

R̂(x, z)=x cosϑ0
2 − sin ϑ0

2

∫ xmax(x,z)

0

k2z(x, z)

k2x

dx. (12)

The solution of the integral equation is shown in Figure 3.
As can be seen from Figure 3, the magnitude of R̂ increases from R̂ =0 (when ϑ0

2 =0) to
R̂ ≈10−7 m (when ϑ0

2 =90◦). The dependence R̂(Ĵ , ϑ0) is presented in absolute values, so the
dependence is divided into two parts: before intersection with the straight trajectory, where
R̂ >0, and after the intersection, when R̂ <0.

It follows from Figure 2 that, for the assumed value of ω and ϑ0 ≈ 45◦, the accumulated
pass difference is on the order of λ0 for a single passage through a medium. This quantity
increases linearly upon multiple rereflection at a cylindrical surface of radius R0, which forms
a symmetric nonconfocal resonator. There is accordingly a large margin in terms of accuracy
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Figure 3. The dependence of the shortest distance R̂ from the trajectory of the electromagnetic-wave vector to the
straight line, along which light propagates, when ω=0, and from the incident angle ϑ0 and normalized path length
Ĵ is shown.

for studying the relativistic curvature of the propagation trajectory of a light beam in a laser-
interference experiment.

3. Propagation of a monochromatic electromagnetic plane wave in a medium with
translational flow

Let us consider an inertial system in which a medium with dielectric permittivity ε1 and mag-
netic permittivity µ1 is at rest in a half-space Z <0, and a medium with ε2,µ2, measured in
its own frame of reference, moving at a velocity u2(x, z)= (β2x, β2z) in a half-space Z>0. The
tangential velocity is discontinuous on the boundary of the two media. We assume that the
velocity field is invariable in the direction of the axis Y .

The expression for k2z imposes restrictions on its dependence on β2(x, z) regarding the
existence of analytical solutions of the equation for the wave-vector trajectory in the medium.

Using the dependence (1), when a solution z=f (x) is sought, we obtain an implicit inte-
gral equation z= ∫ xmax(x,z)

0 f (x, z)dx, which, in general, does not have an analytical solution
[14]. Even so, there is a case allowing an analytical solution, namely when the spatial charac-
ter of the dragging effect for light appears more naturally.

Let us consider a dependence of the velocity u2 on the coordinates x, z, as follows:

β2 = ω2

c2 (R0 − z)2 + ω2

c2
x2, (13)

which corresponds to a rotation relative to the center (0,R0) with angular velocity ω. The
dependence defines the parameters u2x =ω(R0 − z), u2z =ωx as functions of the independent
coordinates. Use of the relation (13), with both components taken into account, requires the
numerical methods described in [15] since analytical methods result in increasing truncation
errors that exceed the investigated effect.

On the other hand, the spatial character of light dragging – the curvature of the wave
vector trajectory – is influenced by the tangential component of the velocity of the moving
medium. Therefore, the most interesting case to study is that of spatial dragging by a moving
medium.
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Let us consider the case involving only a tangential component of the moving medium,
β2x , but with β2z =0. This corresponds to the law of drift flow with a velocity that is linearly
dependent on the distance from the boundary. Then, for the refractive angle ϑ2, we can write

tan2 ϑ2(z)=
(

k2x

k2z

)2

= α̂2
(
1−β2

x (z)
)

γ̂ 2
(
1−β2

x (z)
)+ (n2

2 −1
) (

1− α̂βx(z)
)2 , (14)

where α̂ = sin ϑ0, γ̂ = cosϑ0, n2 =√
ε2µ2, βx(z)=u2x(z)/c.

The wave vector, k0 =2π/λ0, of an incident electromagnetic wave obeys the relation k0 >>

1/R0. This allows us to use solutions of a dispersion equation for a plane electromagnetic
wave, having a tangential velocity discontinuity on the boundary between two media for each
local field in a medium.

It is more interesting for us to study the equation, describing the trajectory of k2, based
on the following analytical dependence x =f (z):

x =
∫ z

0
tan ϑ2(z)dz. (15)

A peculiarity of the obtained expression is that the limits can be given arbitrarily. For exam-
ple, we do not have exact information about the point of intersection of the trajectory and
the given cylindrical surface with radius R0. Therefore, the integral contains a varying upper
boundary. Also, we notice that the expression for the refractive angle is approximate and con-
tains quadratic terms; this has a principal value when the spatial dragging effect by a moving
medium is studied.

We will seek the solution of Equation (4) for a general case. For this, we will substitute it
in (14) and make a change of the variable βx . Then, after transformations, we will get [16]:

x = τ

β2∫
β1

(βx −1)dβx√
G4(βx)

, (16)

where

τ = c

ω

α̂√
1−n2

2α̂
2
, G4(βx)= (a1 −βx) (a2 −βx) (βx −a3) (βx −a4) ,

βx1,2 = α
(
1−n2

2

)± γ̂ 2n2

1−n2
2α

2
, a1 =βx1, a2 =−a3 =1, a4 =βx2.

The expression contains the square root of a polynomial of the fourth degree, and we can
show that (16) can be presented as a combination of elliptic integrals. The integration limits
are defined by the expression β1 =β2x(z1), β2 =β2x(z2) for the initial and final coordinates
of the wave-vector trajectory. Let us introduce the expression

Js =
∫

dβx

(βx −1)s
√

G4 (βx)
. (17)

Then, for the coordinate x, it can be written

x = τ
(
J−2 −2J−1

)∣∣β2
β1

(18)

In order that J−2 can be reduced to tabulated integrals, it is necessary to increase its order.
Let us decompose G4(βx) in terms of powers of (βx −1)

G4(βx)=b0 (βx −1)4 +b1 (βx −1)3 +b2 (βx −1)2 +b3 (βx −1)+b4,
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where

b0 =1, b1 =4− (βx1 +βx2) , b2 =5+βx1βx2 −3 (βx1 +βx2) ,

b3 =2 (1+βx1βx2 − (βx1 +βx2)) , b4 =0.

By integrating the first derivative of the product√
G4(βx) (βx −1)−s ,

we will obtain a recurrence formula, permitting to decrease the order of an elliptic integral

b0 (2− s) Js−3 + b1

2
(3−2s) Js−2 +b2 (1− s) Js−1

+b3

2
(1−2s) Js −b4sJs+1 =

√
G4(βx) (βx −1)−s , s =1,2,3, . . . (19)

By using (19) with s =1 and taking into account that b4 =0, we will get the following expres-
sion for J−2:

J−2 = 1
2b0

(
2
√

G4(βx)

βx −1
−b1J−1 +b3J1

)
. (20)

After substitution of (20) in (18), the expression for x will become

x = τ

2b0

(
2
√

G4(βx)

βx −1
+b3J1 + (4b0 −b1) J−1

)∣∣∣∣∣
β2

β1

. (21)

It should be noted that the inequalities

a1 >a2 ≥βx >a3 >a4

are fulfilled, and we introduce

I1 =
∫ βx

c

βxdβx√
G4(βx)

, I2 =
∫ βx

c

dβx√
G4(βx)

, I3 =−J1 |βx
c .

Then, Equation (10) can be expressed via tabulated integrals

x = τ

2b0

(
2
√

G4(βx)

βx −1
−b3I3 + (4b0 −b1) (I1 − I2)

)∣∣∣∣∣
β2

β1

, (22)

I1 =2g [(a3 −a4)�(ϕ, n̄1, k)+a4F(ϕ, k)] ,

I2 =2gF(ϕ, k),

I3 =2gq [(a3 −a4)�(ϕ, n̄2, k)+ (1−a3)F (ϕ, k)] ,

g = 1√
(a1 −a3) (a2 −a4)

, q = 1
(1−a3) (1−a4)

,

where F(ϕ, k) and �(ϕ, n̄i , k) are normal elliptic integrals of the first and third kind, to which
the characteristics n̄1, n̄2, amplitude ϕ and modulus k are related as follows:

n̄1 = a2 −a3

a2 −a4
, n̄2 = (a2 −a3) (1−a4)

(a2 −a4) (1−a3)
,
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ϕ =arcsin

√
(a2 −a4) (βx −a3)

(a2 −a3) (βx −a4)
, k =

√
(a2 −a3) (a1 −a4)

(a1 −a3) (a2 −a4)
.

By substituting the coefficients a1, a2, a3, a4, we finally have

x = τ

(
λ [(c1�(ϕ, n̄2, k)− c2�(ϕ, n̄1, k)− c3F(ϕ, k)]−

√
G4(βx)

1−βx

)∣∣∣∣∣
β2

β1

, (23)

where c1 = (1+βx2) (1−βx1) , c2 = (1+βx2) (βx2 +βx1),
c3 =2 (1−βx1)+ (1−βx2) (βx2 +βx1) , λ−2 = (1+βx1) (1−βx2).

Comparison of the calculated results using the formula (23) with elliptic-integral tables [17]
and direct calculations with formulae (15) shows that the accuracy of the analytical calcula-
tions depends on the tabular step and interpolations are needed. Hence, up to this effect, the
obtained expression is exact.

We can notice that n̄2 =1 for any a4. In this case �(ϕ, n̄2, k) can be expressed via elliptic
integrals of the first and second kind:

�(ϕ, n̄2 =1, k)=F(ϕ, k)− sec2α (E(ϕ, k)− tan ϕ�ϕ) ,

�ϕ =
√

1−k2 sin2 ϕ, k = sin α.

Using these expressions reduces the interpolation error due to a more accurate computation
of the tables for F(ϕ, k) and E(ϕ, k).

4. Experimental test of the solution of the dispersion equation for the propagation of an
electromagnetic wave in rotating optical media

Propagating in a rotating optical disk, the electromagnetic wave is simultaneously affected by
normal and tangential components of the velocity of the motion. Experimental observation
of the spatial effect of the light-wave drag validates the solution of the dispersion equation
in the general case. For achieving this goal a double-beam two-pass disk interferometer was
designed and built with inputting beams into the flat surface of an optical disk (Figure 4).

In this scheme, the light beam from laser L incident on a beam divider BD was split into
two beams. These beams entered the optical disk OD (one of these after reflecting on the mir-
ror M) to be reflected from the flat mirror surfaces of the OD. The exit beams reflected from
the prism AP changed paths, passed through the optical disk in the reverse direction, and
entered the divider again. Mixed on the divider mirror, the beams passed through an optical
system OS to display the interference pattern on a screen S. The light intensity was measured
by photodetector PD.

The signal from the photodetector passed through a resistor system into an oscillograph.
A digital Kodak DC240 camera with high resolution and a recording element recorded the
oscillograms (25 tests for each combination of rotation direction and an adjustment) and was
then processed and analyzed on a personal computer. Compensating difference features of the
scheme provided high protection against mechanical disturbances.

The interferometer was tuned to interference fringes of equal thickness and determined the
shift of the light-interference pattern using the time signal from the photodetector, when the
optical disk OD rotates. The direction of the interference-pattern (IP) shift in the plane of
analysis of the IP depends on the rotation direction.
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Figure 4. The optical scheme of the interferometer with a rotating optical disk. The scheme realizes the method of
IP shift detection by measuring the time of IP moving on the photodetector.

This method of picking out the time signal is preferred to the method of measuring the
variations in intensity, because the time of IP motion is measured by equipment that has a
higher relative resolution and parameter stability.

After adjusting the OD, the beam spots moved in ellipses on a screen upon slowly rotating
the OD. The ellipticity of the curves is explained by the photoelastic effect. After adjusting
the optical system, checking the stability of the motor while operating, and achieving a sta-
ble IP, the experiment was carried out. When a light beam propagates in a rotating optical
disk, the vector of linear velocity changes its direction in space from point to point; hence
the longitudinal effect of changing light and the transverse deviation of the beam trajectory
should be observed.

To estimate the light-dragging effect, let us consider the solution of the dispersion equa-
tion in the plane XOZ and in the plane of incident and reflected beams. In our experiment a
beam is incident out of a medium with n0 =1 onto the flat surface of the optical disk with a
refractive index n2 under an angle ϑ0 (Figure 5). As the longitudinal light-dragging effect is
determined with the longitudinal component of the linear velocity of motion, we can consider
Equation (1) for β2x =0 and ϑ0 =0; hence

k2z = ω0

c

−κ2γ
2
2 β2z ±

√
1+κ2γ

2
2

(
1−β2

2z

)
1−κ2γ

2
2 β2

2z

, (24)

Considering β2z >> β2
2z

, we obtain an expression for the phase light velocity in a rotating
medium

c′ = ω0√
k2

2x
+k2

2z

∼= c

n2
±u2

(
1− 1

n2
2

)
. (25)

The orientation of k2 and u2 varies along the beam trajectory; therefore for a spatial case we
should use the projection of the medium velocity vector onto the wave vector instead of u2 in (25):
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Figure 5. The optical disk OD. The upper surface of OD has the partial reflective layer with radius R1, the lower
has full reflective cover. Due to the deviation from Snell’s law, the exit point of beam B for the stationary disk
shifts from its position to point B′ for the rotating disk.

u2k =u2z cosϑ sin ϑ2 +u2x sin ϑ sin ϑ2, (26)

with u2x =ω(R − z), u2z =ωx,R =OA and ϑ2 being the angle of refraction. Further we will
take into account that phase accumulation due to trajectory curvature in the plane X,Z is
not large in comparison with the longitudinal effect [15].

We can now show that u2k = ωR sin ϑ sin ϑ2 at any point of the trajectory. When beams
pass through the rotating OD a single time, the IP shift is equal to

�0 = ñ

λ0
(t2 − t1) , (27)

t1 = d

cosϑ2

(
c
n2

+
(

1− 1
n2

2

)
ωR sin ϑ sin ϑ2

) , t2 = n2d

c cosϑ2
, (28)

where λ0 denotes the wave length of light; t1, t2 are the times of passing through the rotating
and static OD, respectively; ω is the OD angular velocity and d the OD thickness.

After substituting t1, t2 in (27), we obtain in the limit ωR <<c:

�0 = κ2ωr
√

R2 − r2

λ0c
. (29)

Here r is the distance between the projection of the beam path in OD and the center of rota-
tion, r =OA sin ϑ (Figure 5). By giving the value of R, we can find the optimal value r for
which �0 will be maximal. From the equation ∂�0

∂r
= 0 we obtain that the optimal value is

equal to r =R/
√

2.
The determined value of the IP shift � in the interferometer should be equal to 32�0.

First, the disk-edge surfaces are mirror-coated, thus doubling the optical path. After reflect-
ing from a prismatic reflector the beams repeatedly pass through OD, which also increases
the resulting IP shift by a factor of 2. In the scheme we use two opposite beams and two
directions of rotation which increases the resulting IP shift by a factor of 4. Carrying out
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the experiments for two different adjustments allows an increase of the resulting IP shift by
another factor of 2.

As a result of this we can write

�= 16lu2n(n
2
2 −1)

λ0c
, (30)

where l =AB ′ is the projection of beam path in OD onto the flat surface of the disk (Figure
5); further u2n =ωr is the linear medium velocity along the light-beam trajectory.

In reality, the IP shift can be increased due to the refraction angle ϑ̃2 which differs from
the one calculated by Snell’s law, ϑ2. As the trajectory curvature is small, we consider a beam
that propagates in the plane POY (Figure 5). The projection of a wave vector on the axis P
can be found from the solution of the dispersion equation, supposing β2y =0 and β2z >>β2

2z
:

k2pz = ω0

c

(
−κ2β2z +

√
cos2 ϑ0 +κ2

)
, (31)

where ϑ0 is the angle of refraction.
The refraction angle in a moving medium is obtained from

tan ϑ̃2 = sin ϑ0

−κ2β2z +
√

cos2 ϑ0 +κ2
. (32)

The increase of the optical path length in OD is equal to the difference between the equiva-
lent optical path le in a rotating medium and the one l0e in a static medium:

�l̃e = le − l0e =4 dn2

(
1

cos ϑ̃2
− 1

cosϑ2

)
. (33)

If OD is stationary, the beam traverses the path in air. The increase in the optical path length
is equal to

�le =�l̃e

(
1− 1

n2

)
. (34)

This value determines the additional path difference of the beam, for the OD passes each time
in one direction, due to a deflection by Snell’s law.

The resulting value of the additional shift, due to this effect, with account taken of all
passes of two beams for all directions and adjustments in our experiment, is equal to

�S =16
�le

λ0
. (35)

Also, we can estimate the value of the additional IP shift as a result of the curvature of the
beam-motion trajectory in a rotating medium. However, for our scheme the opposite beams
have curved trajectories, so the resulting value of the IP shift will tend to zero.

The total shift due to the light-dragging effect and the deviation from Snell’s law, is

�� =�+�S. (36)

The expected shift was calculated for the interferometer parameters used in our experiment:

�=0·0054 bandwidth,�S =0·0013 bandwidth,�� =0·0067 bandwidth. (37)

In the experiment the gas-atomic stabilised laser LGN-302, operating in continuous mode
(λ0 =0·632991µm), was as a light source. The optical disk was a standard plate with a diam-
eter of 120 mm and a thickness of 30 mm and was made of LK5-grade glass (n2 = 1·4766).
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Figure 6. The dependence of the relative voltage of the photodetector PD on time when the first adjustment for the
right (a) and left (b) directions of rotation is used.

One edge surface of a disk and part of another edge surface of a disk with a diameter of
80 mm were fully coated to provide for a reflection coefficient of ρ = 0·9. In the experiment
we used an asynchronous three-phase motor. The average rotation period is T̄ =0·0396 s, that
is, relative to a rotation frequency of 25·26 Hz. The deviation of the rotation speed remained
within ±1%. To decrease the influence of vibrations, the optical system and the motor with
OD was placed on different platforms and tables.

When we used the first adjustment and a counterclockwise direction of the motor rotation,
interference fringes tended to incline to the right and were reset to the original position (Fig-
ure 6a). When the OD was slowly rotated, it was observed that three bands passed across the
photodetector aperture in the forward and reverse directions. Between the motions the stop-
ping point was observed. The photodetector was arranged so that it was between minimum
and maximum of the intensity of a band in the stop position.

The basic unit of the scale used for measuring the experimental results was 1 ms so that
points 1–7 could be accommodated on the oscillograph screen.

The readings tk j , where k numbers the points, were taken from oscillograms. Thereupon
the values were calculated, using

δtj = (t5j − t3j )/2, j = 1, 25, (38)

�tj = (t3j − t2j + t6j − t5j )/2, (39)

where δtj corresponds to the time-distance values between the IP stopping point and the near-
est interference band and �tj corresponds to the time width of the interference fringe. After
this, we processed the oscillograms, using the clockwise direction of the motor rotation, in the
same way (Figure 6b).

The next adjustment was carried out with interference fringes inclining to the left. Sec-
ond directions of motor rotation were used also for the second adjustment. In the experiment
we detected time coordinates of the tk points, when IP moved, so it was necessary to convert
them to the spatial ones. The relation between �t and δt determines the relative position of
an interference fringe in the part of the time bandwidth.

We noticed that beams on the screen moved in ellipses. The ellipse length is determined
using an elliptic integral of the second kind.

We can change the values �t and δt for the ellipse arc lengths δL and �L∑, expressed in
radians, as follows:
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δL=π
δt

T
, �L� = δL+�L/2=π

δt +�t

T
, (40)

δL=a

∫ ϕ5

0

√
1− sin2 α sin ϕ dϕ =a E(ϕ5\α), (41)

�L� =a

∫ ϕ6

0

√
1− sin2 α sin ϕ dϕ =a E(ϕ6\α), (42)

where sin2 α = 1 − b2/a2, a, b are the major and minor ellipse half-axes, T the period of IP
vibrations, E(ϕ5\α),E(ϕ6\α) elliptic integrals of the second kind, ϕ the parameter of the
elliptic integral and ϕ5, ϕ6, the parameters referring to the points 5 and 6.

Inserting the values �t and δt , which were measured in the experiment, into Equation
(37), we can get �L and δL� . It follows from (40) to (42) that a = 1 since the values �t

and δt have been normalised by the period T . Then, using Equations (41) and (42), the rela-
tion b/a taken from the experiment, and tables of elliptic integrals of the second kind, we can
determine ϕ5 and ϕ6.

The relative position of a band from point 4 is determined as

�= δy

�y
= 1− cosϕ5

2(cosϕ5 − cosϕ6)
. (43)

Here δy is the spatial position of a band from the point 4 and �y is the spatial bandwidth

δy =b(1− cosϕ5), �y =2b(1− cosϕ6 − δy).

For two rotation directions and two adjustments of the interfering beams, we can obtain the
resulting measured value of the IP shift:

�� = (�1 −�2)− (�3 −�4). (44)

We notice that calculating the IP shift is carried out for the values that are normalized with
respect to a rotation period and to the interference band width. Thus, the results of the calcu-
lation do not depend on the period of the vibrations and bandwidth from one measurement
to the other. For the series of the experimental data �i the confidence intervals were calcu-
lated with a confidence probability of p = 0·9. Then, the resulting value of the shift turned
out to be equal to

�
Exp
� =0·0076±0·0030 bandwidth (45)

The theoretical magnitude �� =0·0067 falls within the confidence interval (42); moreover, the
relative error of the average value �

exp
� is about 13%.

5. Conclusion

We have found that spatial electromagnetic-wave dragging by a rotating medium should be
taken into account for non-relativistic velocities of the medium. This effect may have an
impact on the results of different measurement procedures [18]. The results of theoretical cal-
culations of the expected IP shift for the used parameters in the experiment were found to
be in agreement with the experimental results of the IP shift. It should be noticed that the
rotation velocity in the experiment was not high. But the spatial light-dragging effect had an
influence on the IP shift.

In order to make the final conclusion that the experimental results are in agreement with
relativistic predictions, it is necessary to increase the experimental accuracy. This may be
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achieved by using a more stable motor with higher rotation frequency and a more sophis-
ticated system of transforming the signal from a photodetector.

In conclusion, from an experimental point of view a study of this physical effect, namely
the curvature of the propagation trajectory of a monochromatic plane electromagnetic wave
in a medium with ω �=0, involves not only a determination of the curvature and the possibil-
ity of carrying out a new experimental test of the electrodynamics of moving media, but also
the construction of a new relativistic interferometer.

Acknowledgement

This work was supported by Grants Council of the President of Russian Federation (grant
N o MD-170.2003.08).

References

1. G. Sagnac, L’ether lumineux demontre par l’effect du vent relative d’ether dans un interferometer en rotation
uniforme. C.R. Acad. Sci. 33 (1913) 349–354.

2. A.A. Logunov and Yu.V. Chugreev, Special theory of relativity and the Sagnac effect. Sov. Phys. Usp. 31
(1998) 861–867.

3. C.V. Heer, Resonant frequencies of an electromagnetic cavity in an accelerated system of reference. Phys.
Rev. A. 134 (1964) 799

4. E.J. Post, Sagnac effect. Rev. Mod. Phys. 39 (1967) 475–494.
5. H. d’Fizeau, Sur les hypotesis relatives a l’ether lumineux, et sur une experience qui parait demonter que le

mouvement des corps change la vitesse avec laquelle la lumiere se propage dans leur interieur. Ann. Chim.
Phys. 57 (1859) 385.

6. H.J. Arditty and H.C. Lefevre, Sagnac effect in fiber gyroscopes. Opt. Lett. 6 (1981) 401–403.
7. H.R. Bilger and W.K. Stowell, Light drag in a ring laser: An improved determination of the drag coefficient.

Phys. Rev. A. 16 (1977) 313–319.
8. I. Lerche, The Fizeau effect: Theory, experiment, and Zeemen’s measurements. Am. J. Phys. 45 (1977) 1154–

1163.
9. W.R. Leeb, G. Schiffner and E. Scheiterer, Optical fiber gyroscopes: Sagnac or Fizeau effect? Appl. Opt. 18

(1979) 1293–1295.
10. V. Vali, R.W. Shorthill and M.F. Berg, Fresnel-Fizeau effect in a rotating optical fiber ring interferometer.

Appl. Opt. 16 (1977) 2605–2607.
11. O.G. Zagorodnov, Ya.B. Fainberg and A.M. Egorov, Frequency multiplication by using the plasma “col-

lapse”. JETP 38 (1960) 7–9.
12. S. Solimeno, B. Crosignani and P. DiPorto, Guiding, Diffraction, and Confinement of Optical Radiation.

Orlando: Academic Press. (Russian edition (1986) 664 pp.)
13. B.M. Bolotovskii and S.N. Stolyarov, Reflection of light from a moving mirror and related tasks. Sov. Phys.

Usp. 32 (1989) 813–838.
14. V.O. Gladyshev, T.M. Gladysheva and V.Ye. Zubarev, The effect of light entrainment observed in an optical

disk interferometer. Tech. Phys. Lett. 28 (2002) 123–125.
15. V.O. Gladyshev, Curvature of the trajectory traced out by a monochromatic plane electromagnetic wave in

a medium with rotation. JETP Lett. 58 (1993) 569–572.
16. V.O. Gladyshev, Propagation of a monochromatic electromagnetic plane wave in a medium with nonsimple

motion. Tech. Phys. 44 (1999) 566–569.
17. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions. Washington: National Bureau of Stan-

dards. (1964) 1046 pp.
18. V. Gladyshev, T. Gladysheva and V. Zubarev, Description of electromagnetic radiation in complex motion

media with account of the relativistic effects. In: M.C. Duffy, V.O. Gladyshev and A.N. Morozov (eds.), Proc.
of Int. Meeting Phys. Interpretations of Relativity Theory. Moscow-Liverpool-Sunderland (2003) pp. 112–121.


